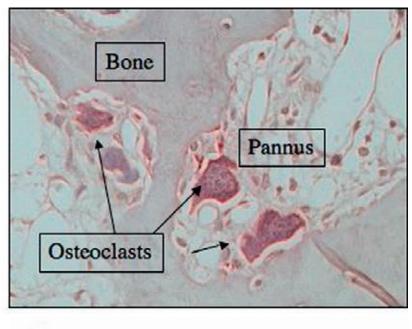
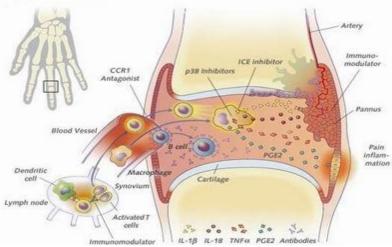
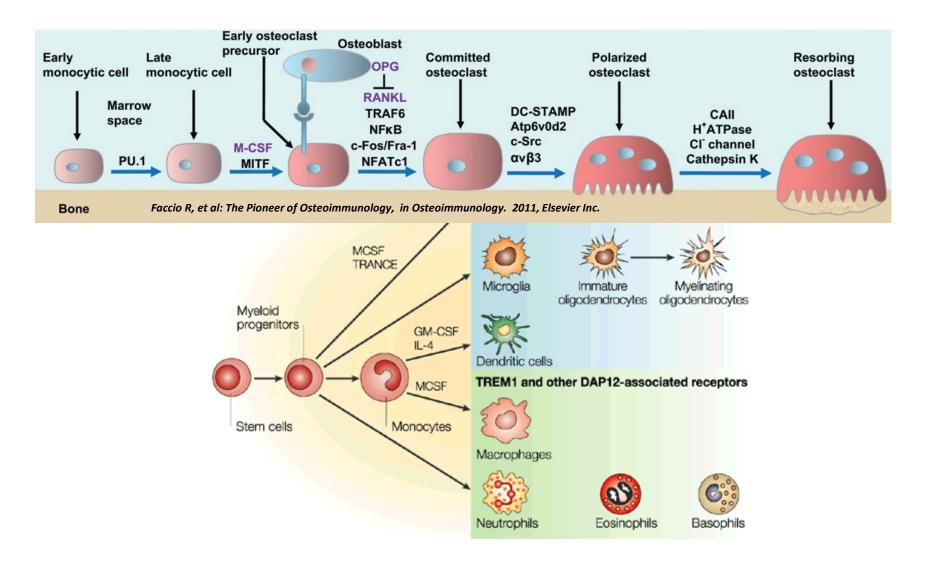
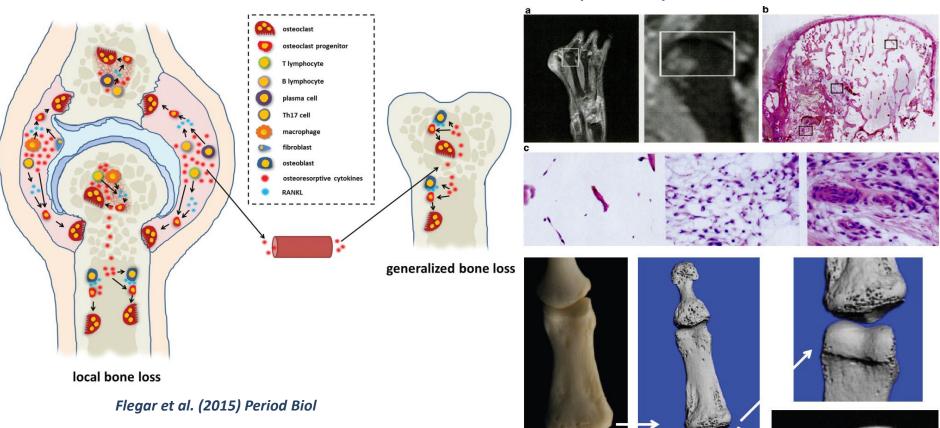
PhD Day Zagreb, May 22nd 2015


CHEMOKINE RECEPTOR PROFILE OF OSTEOCLAST PROGENITOR CELLS IN PATIENTS WITH RHEUMATOID ARTHRITIS


PhD candidate: Alan Šućur, MD Mentor: Prof. Danka Grčević, MD, PhD

Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 3, 10 000 Zagreb, Croatia

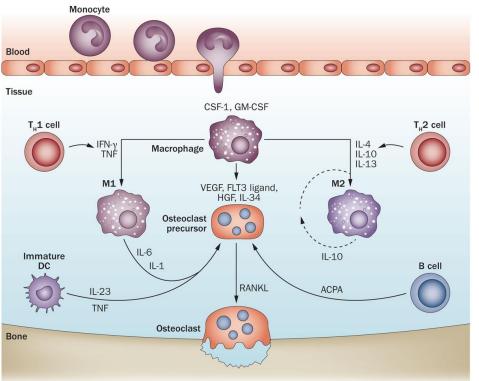

Rheumatoid arthritis



Osteoclast origin and differentiation

Marco Colonna (2003) Nature Reviews | Immunology

Bone loss in RA: systemic, periarticular and focal

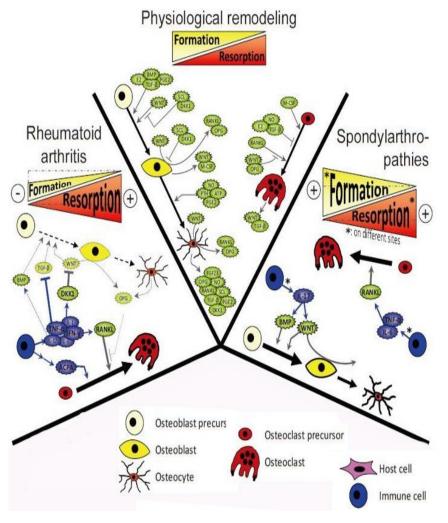


BME (OSTEITIS)

BONE EROSIONS

Maastricht UMC & UHasselt

Inflammation-induced osteoclast activation



Adamopoulos, I. E. & Mellins, E. D. (2014) Nat. Rev. Rheumatol

Low BMD and osteoporosis – increased fracture risk (mortality!)

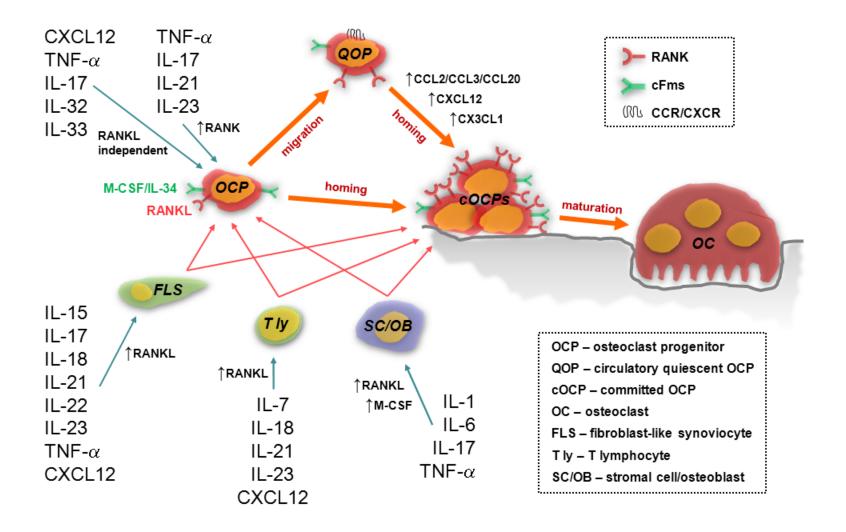
- Rheumatoid arthritis (RA) (Lodder M et al. Ann Rheum Dis 2004)
- Systemic lupus erythematosus (SLE) (Zhu TZ et al. J Rheumatol 2014)
- Systemic sclerosis (Omair MA et al. Clin Exp Rheumatol 2014)
- **Dermatomyositis** (de Andrade DC et al. Rheumatol Int 2012)
- Insulin dependent diabetes mellitus (Khan TS et al. J Osteoporos 2015)
- **Multiple sclerosis** (Kampman MT et al. Acta Neurol Scand Suppl 2011)
- Coeliac disease (Tau C et al. Eur J Clin Nutr 2006)
- **Chron's disease** (Targownik LE et al. Curr Opin Gastroenterol. 2014)
- **Primary biliary cirrhosis** (Mounach A et al. J Bone Miner Metab. 2008)
- **Sjogren's disease** (Gravani et al. Arthritis Research & Therapy 2015)

Bone resorption in autoimmune conditions

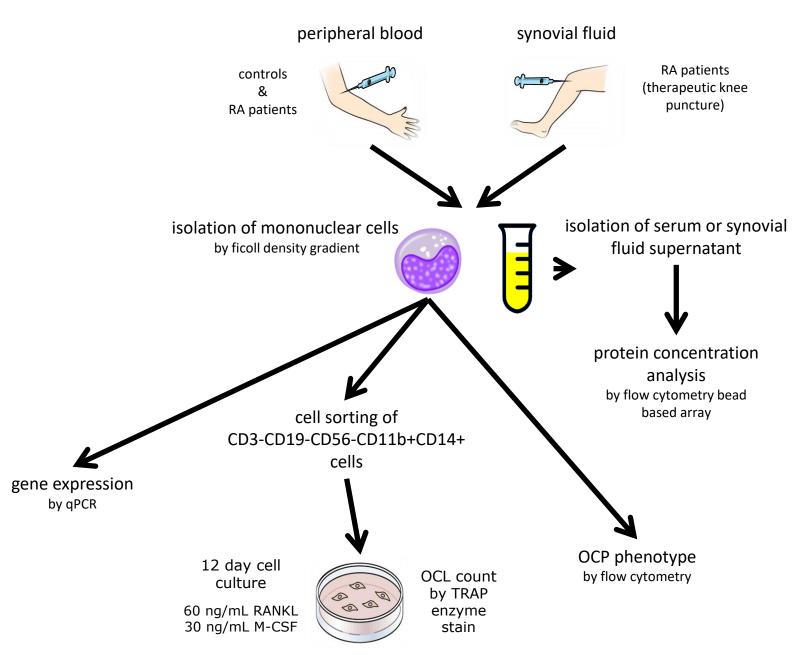
Modified, according to Gosset M, Int J Orthop 2014;1:124-9.

Prominent osteoresorption and bone erosions

- Rheumatoid arthritis
- Juvenile idiopathic arthritis (Malattia C et al. Arthritis Rheum. 2008)


Excessive bone formation with or without osteolysis

- Ankylosing spondylitis
- Reactive arthritis
- Psoriatic arthritis


Autoimmunity affecting joints without alterations in bone

 Entheropatic arthritis, Systemic lupus erythematosus, Sjogren's syndrome, Familial mediterannean fever

Regulation of OCP trafficking

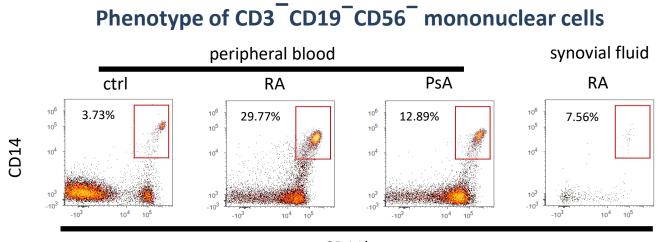
Materials and methods

Osteoclast progenitor phenotype

MOUSE

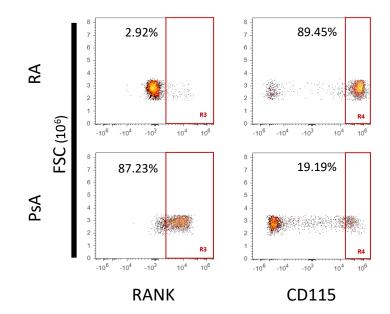
lymphoid negative, CD11b^{low}, Ly6C^{hi}, CD115⁺, CCR2⁺

Table 1 Surface marker expression profile of mouse osteoclast progenitor populations

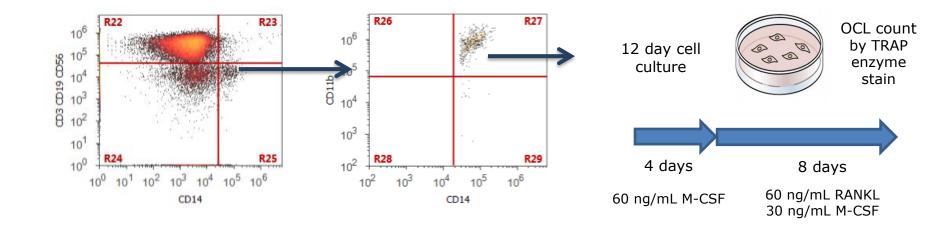

Osteoclast progenitor phenotype	Source ^a
CD117 ⁺ CD115 ⁺ RANK ⁻	BM
B220 [°] CD3 [°] CD115 ^h °CD115 ⁺ CD117 ⁺ CX3CR1 ⁺ B220 [°] CD3 [°] NK1.1 [°] CD115 ⁺ Ly6C ^{hi} CD115 ⁺ CX3CR1 ⁺ B220 [°] CD117 ⁺ CD115 ⁺ CD115 ⁺ CD17 ⁺	BM PBL, SPL BM
CD115 ¹⁰ RANK ^{hi} (mostly CD11b ⁻ F4/80 ⁻ Gr-1 ⁻)	BM, PBL
CD11b ⁺ Gr-1 ⁺ CD80 ^{lo} CD115 ⁺ F4/80 ⁻	BM (TM)
CD11b+Gr-1+CCR2+	PBL, SYN (CIA)
CD3 ⁻ B220 ⁻ Ter119 ⁻ CD11b ^{-/b} Ly6C ^{hi} CD135 ^b CD11c ⁻ CD115 ⁺ CD117 ⁺ CX3CR1 ⁺ RANK ⁻	BM (SKG)
CD11b ⁺ Gr-1(Ly6G) ^{-/lo}	BM, PBL (hTNF-Tg)
B220 ⁻ CD3 ⁻ F4/80 ⁻ CD117 ⁻ CD11b ^{hi} CD115 ⁺	SPL (hTNF-Tg)
CD11b ⁺ RANK ⁺	SPL (IFN-γR KO CIA)

HUMAN lymphoid negative, CD11b⁺, CD14⁺, CD16⁺, CD15^{low}

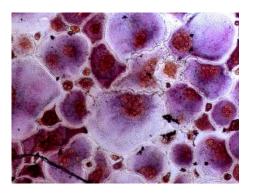
Table 2 Surface marker expression profile of human osteoclast progenitor populations

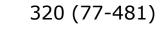

Osteoclast progenitor phenotype	Source ^a
CD14 ⁺ ; CD11b ⁺ ; or CD61 ⁺	PBL
CD3 ⁻ CD19 ⁻ CD56 ⁻ CD14 ⁺ CD11b ⁺	PBL
$CD14^{+}CD11b^{+}$ (int $\beta1^{+}$ int $\beta2^{+}$ int $\beta3^{-}$)	PBL
<u>CD14^{hi}CD11b</u> ⁺ CD51/61 ⁺ CD16 ⁺	PBL (MM)
$\frac{\text{CD14}^{+}\text{RANK}^{\text{hi}}}{\text{CD45}^{+}\text{CD14}^{+}\text{CD51/61}^{+}\text{CD115}^{+}\text{RANK}^{+}}$ $\frac{\text{CD14}^{+}\text{CD16}^{-}(\text{CD33}^{\text{hi}})\text{CD115}^{\text{lo}}}{\text{CD14}^{+}\text{CD16}^{-}(\text{CD33}^{\text{hi}})\text{CD115}^{\text{lo}}}$	PBL, BM GCT PBL, SYN (RA)
CD16 ⁺ (gp-39): CD3 ⁻ CD4 ⁻ CD8 ⁻ CD20 ⁻ CD56 ⁻ CD33 ^{lo} MHCII ^{lo} CD14 ^{lo}	PBL, SYN (RA)
CD3 ⁻ CD19 ⁻ CD14 ⁺ CD16 ⁺ DC-STAMP ⁺	PBL (PsA)
CD14 ⁺ (MHCII ⁺)CD16 ⁺	PBL (PsA)

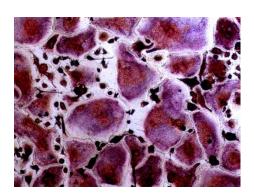
Frequency and phenotype of OCPs



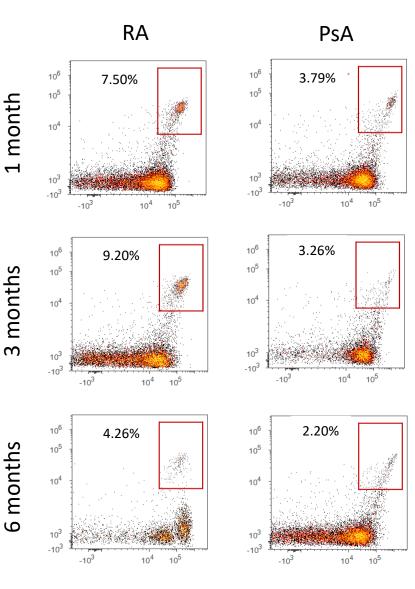
CD11b


Phenotype of CD11b⁺CD14⁺ lymphoid marker negative cells




Osteoclastogenic potential of OCPs

RA

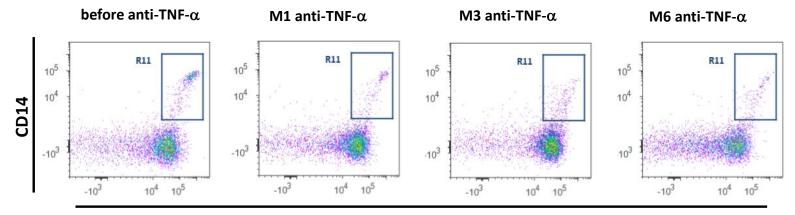

control

207 (92-514)

number of osteoclasts per well [median (IQR)]

p = 0,7970

Frequency of OCPs during anti-TNF therapy

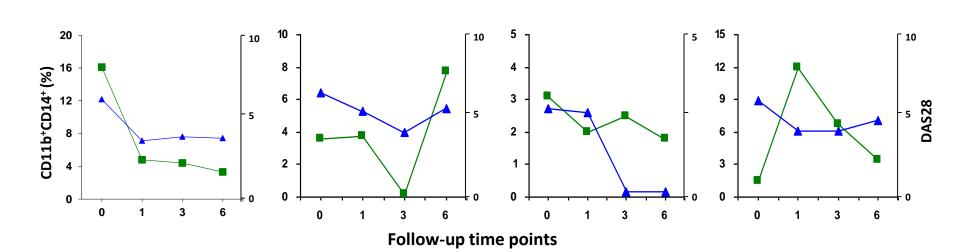


Osteoclastogenic culture in relation to anti-TNF therapy

1st month	3rd month	6th month
49±8	275±47	384±56

number of osteoclasts per well

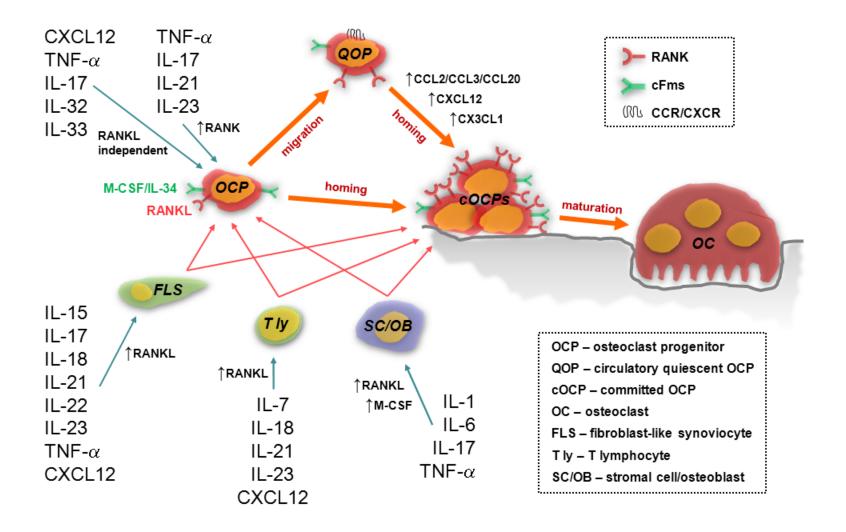
Correlation of DAS28 with OCP frequency

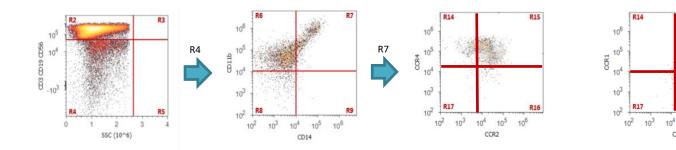


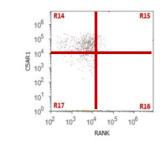
CD3-CD19-CD56-

CD11b

CD11b⁺CD14⁺

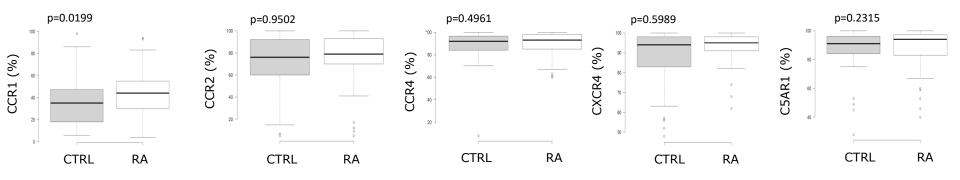

DAS28


Conclusions #1

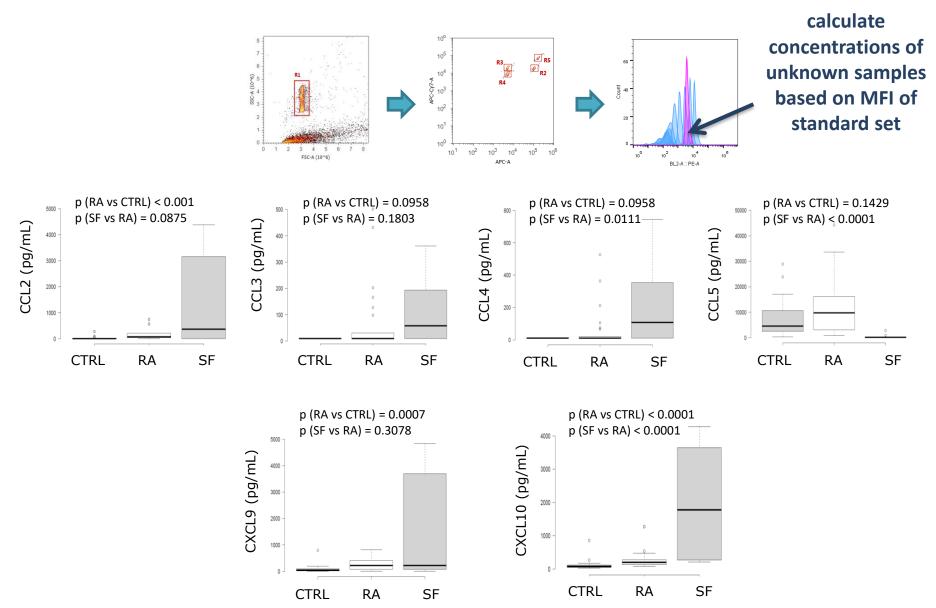

- OCPs , found among the CD3–CD19–CD56–CD11b+CD14+ subpopulation of peripheral blood mononuclear cells, are able to differentiate into mature OCs in vitro, and appear to be specifically induced in RA and PsA
- differentiation potential of sorted OCPs did not significantly differ in RA
- OCPs differ by surface marker expression in RA and PsA:
 - RA OCPs are RANK negative, highly express CD115
 - PsA OCPs highly express RANK, ~1/5 express CD115
- anti-TNF treatment lowered the frequency of peripheral OCPs, which correlated with a lower DAS28, and could be used to monitor the reponse to therapy
- anti-TNF treatment only transiently suppressed osteoclastogenic potential of peripheral OCPs, indicating that additional therapeutic modalities, besides TNF-blocking agents, could be considered for sustained antiresorptive effect

Regulation of OCP trafficking

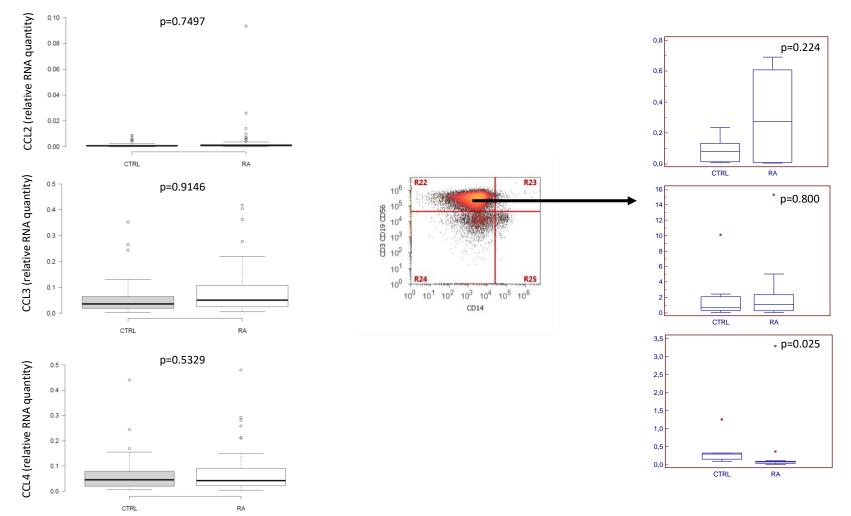
Chemokine receptor phenotype of OCPs


R15

R16


10⁶

10⁵


CXCR4

Chemokine concentrations in control serum vs serum and SF of RA patients

Chemokine gene expression in PBMC and PB lymphocytes

Conclusions #2

• human peripheral blood OCPs similarly expressed CCR1, CCR2, CCR4 and CXCR4 in RA and healthy subjects

• CCL2, CXCL9 and CXCL10 serum levels were significantly higher in RA

• CCL4 and CXCL10 levels in synovial fluid were significantly higher compared to serum

 the source of chemokines appears to be other than PBMC/ PB lymphocytes

• elevated chemokine concentrations and a possible bloodjoint chemokine gradient in RA suggest a chemotactic mechanism of OCP migration to affected joints

Acknowledgements

Laboratory for Molecular Immunology

Prof Danka Grčević

Prof Vedran Katavić

Prof Nataša Kovačić

Prof Zrinka Jajić

Prof Asja Stipić Marković

Prof Branimir Anić

Tomislav Kelava, MD, PhD

Marinko Artuković, MD

Marina Ikić, MD

Darja Flegar, MD

Sanja lvčević

Katerina Zrinski Petrović

This work has been fully supported by Croatian Science Foundation under the project 5699.

