

This work has been fully supported by Croatian Science Foundation under the project 5699.

CHARACTERIZATION OF OSTEOCLAST PROGENITORS IN PATIENTS WITH RHEUMATOID ARTHRITIS

Alan Šućur, MD Project PI: prof. Danka Grčević, PhD, MD

Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 3, 10 000 Zagreb, Croatia

Rheumatoid arthritis

Flegar et al. (2015) Period Biol

Sucur A, Katavic V, Kelava T, Jajic Z, Kovacic N, Grcevic D. Induction of osteoclast progenitors in inflammatory conditions: key to bone destruction in arthritis. Int Orthop 2014

Enrolled patients

	Control Group	Rheumatoid Arthritis
Sample No & Type	100 (peripheral blood)	106 (106 peripheral blood, 9 synovial fluid)
Age (years)	62.38±14.72	65.83±11.84
Male/female	12/88	10/96
DAS28	-	5.76±1.45
SE (mm/h)	-	33.44±23.99
CRP (mg/L)	-	19.00±22.40
RF (IU/L, n=58)	-	84.75 [13.9-264.37]
aCCP (EU/L, n=33)	-	68.7 [1.85-281.5]

Osteoclast progenitor phenotype

Table 2 Surface marker expression profile of human osteoclast progenitor populations

Osteoclast progenitor phenotype	Source ^a
$CD14^+; CD11b^+; \text{ or } CD61^+$	PBL
CD3 ⁻ CD19 ⁻ CD56 ⁻ CD14 ⁺ CD11b ⁺	PBL
$\underline{\text{CD14}^{+}\text{CD11b}^{+}}(\text{int}\beta1^{+}\text{int}\beta2^{+}\text{int}\beta3^{-})$	PBL
$\underline{CD14^{hi}CD11b}^{+}CD51/61^{+}CD16^{+}$	PBL (MM)
CD14 ⁺ RANK ^{hi} CD45 ⁺ CD14 ⁺ CD51/61 ⁺ CD115 ⁺ RANK ⁺ CD14 ⁺ CD16 ⁻ (CD33 ^{hi})CD115 ^{lo}	PBL, BM GCT PBL, SYN (RA)
CD16 ⁺ (gp-39): CD3 ⁻ CD4 ⁻ CD8 ⁻ CD20 ⁻ CD56 ⁻ CD33 ¹⁰ MHCII ¹⁰ CD14 ¹⁰	PBL, SYN (RA)
CD3 ⁻ CD19 ⁻ CD14 ⁺ CD16 ⁺ DC-STAMP ⁺	PBL (PsA)
CD14 ⁺ (MHCII ⁺)CD16 ⁺	PBL (PsA)

Sucur A Int Orthop 2014

Frequency and phenotype of OCPs

Similar frequency of OCPs in the PBMC

(n=90 RA, 100 CTRL)

Subpopulation similarly expresses crucial receptors for OC differentiation

Similar osteoclastogenic potential of OCPs

RA

control

207 (92-514) p = 0.7970 320 (77-481)

number of osteoclasts per well [median (IQR)]

(n=20 RA, 25 CTRL)

Regulation of osteoclast progenitor trafficking

Osteoclast progenitors express chemokine receptors

Increased chemokine concentrations and an indication of a blood-joint gradient

Chemokine gene expression in PBMC

Association of population frequencies with clinical parameters and chemokine levels

Osteoclastogenic effect of chemokines

Osteoclast progenitor migration assay

Peripheral blood OCPs exhibit chemotaxis

Conclusions

- OCPs , found among the CD3–CD19–CD56–CD11b+CD14+ subpopulation of peripheral blood mononuclear cells, express crucial receptors for OC differentiation and are able to differentiate into mature OCs *in vitro* – with similar phenotype and differentiation potential in RA and control samples
- human peripheral blood OCPs express CCR1, CCR2, CCR4 and CXCR4, and at similar levels in in RA and control samples
- CCL2, CCL3, CCL4, CCL5, CXCL9 and CXCL10 serum levels were significantly higher in RA, while CCL4 and CXCL10 levels in synovial fluid were significantly higher compared to serum
- CCL2, CCL5 and CXCL10 exhibit a marked osteoclastogenic effect
- OCPs exhibit strong chemotaxis towards CCL5
- elevated chemokine concentrations, a possible blood-joint/bone chemokine gradient in RA and chemotactic ability of peripheral blood OCPs suggest a possible mechanism of OCP migration to affected joints

Acknowledgements

Laboratory for Molecular Immunology

Prof. Danka Grčević, MD, PhD

Prof. Nataša Kovačić, MD, PhD

Prof. Vedran Katavić, MD, PhD

Prof. Zrinka Jajić, MD, PhD – KBC "Sestre Milosrdnice"

Prof. Asja Stipić Marković, MD, PhD – KB "Sveti Duh"

Prof. Branimir Anić – KBC "Zagreb"

Doc. Tomislav Kelava, MD, PhD

Marinko Artuković, MD, PhD

Darja Flegar, MD

Antonio Markotić, MD

Sanja lvčević

Katerina Zrinski Petrović

This work has been fully supported by Croatian Science Foundation under the project 5699.

Department of Reconstructive Sciences

Prof. Ivo Kalajzić Prof. Brya G Matthews