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Eosinophil degranulation
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compound exocytosis)
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Extracellular membrane-

coated granules;  
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(a.k.a. cell death); some  

evidence of ability of  
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Eosinophil-associated diseases

• Parasites

• Allergic diseases

• Asthma

• Eosinophilic esophagitis  

(EoE), and other EGID

• Hypereosinophilic  

syndrome/chronic  

eosinophilic leukemia  

(HES/CEL)
Image from Becker SL et al. Euro Surveill. 2015



Factors that influence eosinophil accumulation

Recruitment

Development in  

situ from  

progenitors

Egress

Death

IN OUT

Steady state # of eosinophils



Role of eosinophil cell death in disease

• Ultrastructural and immunohistochemical studies in human  

tissue from patients with eosinophilic diseases demonstrate  

significant eosinophil cytolysis/necrosis

• even though the number of eosinophils was decreased in the  

bronchial tissue of patients with asthma by ~50% after anti-IL-5  

treatment, the deposition of extracellular eosinophil granule  

protein MBP did not differ from before treatment or with  

placebo, correlating with lack of treatment effect in some cases

• intact extracellular eosinophil granules have the ability to  

function as secretory organelles extracellularly after eosinophil  

cytolysis

Uller L, et al: Am J Respir Crit Care Med 2004; Armengot M, et al: Am J Rhinol Allergy 2009; Colombel JF, et al:. Gut 1992; Tai PC,
et al: Lancet 1987; Wright BL, et al: N Engl J Med 2011; Flood-Page PT, et al: Am J Respir Crit Care Med 2003; Neves JS, et :

Proc Natl Acad Sci U S A 200



EoE with intact eosinophils and Cfegs  

(clusters of free eosinophil granules)



Margaret Collins, MD



• Patient with hypereosinophilia  

and brain microemboli;  

endomyocardial disease was  

suspected but no eosinophils  

were seen by H&E

• Staining for anti-MBP

• Wright BL, Leiferman KM and Gleich  

GJ. Eosinophil Granule Protein  

Localization in Eosinophilic  

Endomyocardial Disease. New Engl J  

Med 2011;365:2.



From Zimmermann N and Rothenberg ME. Blood 2015; 125:3831



Cell death

Apoptosis

• regulated

• non-inflammatory

Necrosis

• not regulated

• pro-inflammatory



Cell death

Apoptosis Necrosis

Necroptosis

Caspases etc RIP kinases etc

Ferroptosis
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dependent  
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Regulated cell death pathways

From Vanden Berghe T et al. Nature Reviews 2014;15:135

RIPK1, RIPK3

pMLKL
Cyclophilin D /  

Ppif



Pasparakis and Vandenabeele. Nature 2015; 517:311

Necroptosis



Regulation of eosinophil viability

Survival factors

Death factors

+

• Survival factors: IL-5, IL-3, GM-CSF, TNF,  

IFNs, acidic microenvironment, -agonists etc.

• Death-inducing signals: ligation of Fas, glycans  

that crosslink Siglec-8, corticosteroids,  

theophylline (cAMP-independent), TGF- etc.
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- anti-Siglec-8 + IL-5

- anti-Siglec-8 only

- Control

- IL-5 only

Siglec-8 engagement induces  

eosinophil cell death

Nutku E et al Blood 2003
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Crocker, Curr Opin Pharmacol 5:431, 2005
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Siglec-11

CD33
Siglec-3

Mouse CD33-related siglecs

Siglec-G Siglec-HCD33 Siglec-E5 Siglec-F  
Siglec-3

MAG
Siglec-4

Sialoadhesin CD22  
Siglec-1 Siglec-2

Human, mouse etc Human CD33-related siglecs

Ig domain, V-set sialic acid binding  

Ig domain, C2-set

ITIM-SHP-1/SHP-2 binding motif  

ITIM-like

Grb2 binding motif

Fyn kinase phosphorylation site



Bochner, B. S. et al. J. Biol. Chem. 2005;280:4307-4312

Structures of glycans used to verify specificity of Siglec-8-Ig binding
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Intracellular

ITIM domain (LxYxxL)  

SLAM-like domain (SxYxxI)

Glycan binding domain
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Eosinophil cell death

Siglec-8 crosslinking



Anti-Siglec-F treatment of mice  

decreases number of eosinophils

From Zimmermann N et al Allergy 2008



Siglec-F-deficient mice have enhanced  

eosinophilia following allergen challenge

From Zhang M et al Blood 2007



Summary I

• Siglec-8 is a novel target: relatively specific for eosinophils,  
more effective on activated (tissue?) eosinophils

• Targeting Siglec-F in mouse models shows improvement of  

disease outcomes

• Paradoxical aspect of Siglec-8-induced eosinophil cell death is  

that this effect is significantly enhanced by IL-5, an eosinophil  

survival factor

• goal is to understand what are the consequences of this  

different type of cell death, and how this enhancement occurs  

on a molecular level (as this could be exploited to enhance anti-

Siglec-8 therapeutics as well as provide new conceptual model  

for Siglec-8 signaling)
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Different mode of anti-Siglec-8-induced  

cell death in IL-5-activated eosinophils

J Allergy Clin Immunol 2013; 132:437-445



J Allergy Clin Immunol 2013; 132:437-445

Different mode of anti-Siglec-8-induced  

cell death in IL-5-activated eosinophils

Anti-Siglec-8 Anti-Siglec-8
+ IL-5



J Allergy Clin Immunol 2013; 132:437-445

EPO release from anti-Siglec-8/IL-5-

treated eosinophils

PMA

Anti-Siglec-8/IL-5

Anti-Siglec-8 alone  
Ctrl atb/IL-5
Ctrl atb alone



J Allergy Clin Immunol 2013; 132:437-445

ERK pathway phosphorylation  

is enhanced by anti-Siglec-8



ERK pathway phosphorylation  

is enhanced by anti-Siglec-8

J Allergy Clin Immunol 2013; 132:437-445



ERK activation is required for IL-5 + anti-

Siglec-8 induced eosinophil cell death

J Allergy Clin Immunol 2013; 132:437-445



Enhanced ERK phosphorylation  

is dependent on ROS

Inhibiting ROS does inhibit ERK  
enhancement

Inhibiting MAPK does not inhibit ROS

J Allergy Clin Immunol 2013; 132:437-445



ITIM

Y

Ab

Glycan

Siglec-8

ROS

IL-5

Akt STAT5

Differentiation  

Activation  

Priming  

Survival

EErrkk

CCeellllddeeaatthh

SFK

Kano G, Bochner BS, Zimmermann N. Immunobiology. 2017;222:343.



Regulated cell death pathways

From Vanden Berghe T et al. Nature Reviews 2014;15:135

RIPK1, RIPK3

pMLKL
Cyclophilin D /  

Ppif



Mouse eosinophils methods
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Cyclophilin D-deficient eosinophils  

have decreased regulated necrosis
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Cyclophilin D-deficient mice are  

protected in DSS-induced colitis model
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Decreased cytolysis of eosinophils in  

the colon of cyclophilin D-deficient  

DSS-treated mice
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Inflammatory milieu is not altered by  

cyclophilin-D deficiency
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Summary

• Cyclophilin D-mediated regulated necrosis  

pathway is active in eosinophils

• Siglec-F-induced cell death is mediated by  

cyclophilin D, at least in part

• Eosinophil cytolysis and disease outcomes in  

DSS colitis are inhibited by inhibition of  

cyclophilin D-regulated necrosis



Current/future goals

• Define spectrum of cell death pathways in  

eosinophils in vivo

• Determine pathophysiological consequences  

of these various cell death modalities
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Is there a role for Src family kinases (SFK)?

• SFK have been shown to be activated by

ITIM-bearing receptors, including Siglecs

(SHP dephosphorylates inhibitory pY)

• SFK have been shown to induce ROS  

accumulation
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SFK are required for Siglec-8-induced  

ROS production
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